Spy1 interacts with p27Kip1 to allow G1/S progression.
نویسندگان
چکیده
Progression through the G1/S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase that allows progression through G1/S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) that binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activate CDK2 when microinjected into Xenopus oocytes and when expressed in mammalian cells. To determine the mechanism underlying Spy1-induced proliferation in mammalian cell cycle regulation, we used human Spy1 as bait in a yeast two-hybrid screen to identify interacting proteins. One of the proteins isolated was p27; this novel interaction was confirmed both in vitro, using bacterially expressed and in vitro translated proteins, and in vivo, through the examination of endogenous and transfected proteins in mammalian cells. We demonstrate that Spy1 expression can overcome a p27-induced cell cycle arrest to allow for DNA synthesis and CDK2 histone H1 kinase activity. In addition, we utilized p27-null cells to demonstrate that the proliferative effect of Spy1 depends on the presence of endogenous p27. Our data suggest that Spy1 associates with p27 to promote cell cycle progression through the G1/S transition.
منابع مشابه
Spy1 Interacts with p27 to Allow G1/S Progression Running title: Spy1 Overcomes a p27-induced Arrest
Progression through the G 1 /S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase which allows progression through G 1 /S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) which binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activat...
متن کاملHuman Speedy
The decision for a cell to self-replicate requires passage from G1 to S phase of the cell cycle and initiation of another round of DNA replication. This commitment is a critical one that is tightly regulated by many parallel pathways. Significantly, these pathways converge to result in activation of the cyclin-dependent kinase, cdk2. It is, therefore, important to understand all the mechanisms ...
متن کاملHuman Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2
he decision for a cell to self-replicate requires passage from G1 to S phase of the cell cycle and initiation of another round of DNA replication. This commitment is a critical one that is tightly regulated by many parallel pathways. Significantly, these pathways converge to result in activation of the cyclin-dependent kinase, cdk2. It is, therefore, important to understand all the mechanisms r...
متن کاملC-terminal phosphorylation controls the stability and function of p27kip1.
Entry of cells into the cell division cycle requires the coordinated activation of cyclin-dependent kinases (cdks) and the deactivation of cyclin kinase inhibitors. Degradation of p27kip1 is known to be a central component of this process as it allows controlled activation of cdk2-associated kinase activity. Turnover of p27 at the G1/S transition is regulated through phosphorylation at T187 and...
متن کاملParadoxical accumulation of the cyclin-dependent kinase inhibitor p27kip1 during the cAMP-dependent mitogenic stimulation of thyroid epithelial cells.
In different systems, cAMP either blocks or promotes cell cycle progression in mid to late G1 phase. Dog thyroid epithelial cells in primary culture constitute a model of positive control of DNA synthesis initiation and G0-S pre-replicative phase progression by cyclic AMP (cAMP) as a second messenger for thyrotropin (TSH). We report here that TSH markedly increases the expression of p27kip1, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 14 9 شماره
صفحات -
تاریخ انتشار 2003